首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   276篇
  免费   48篇
  国内免费   101篇
测绘学   1篇
大气科学   2篇
地球物理   39篇
地质学   198篇
海洋学   172篇
天文学   1篇
综合类   10篇
自然地理   2篇
  2024年   2篇
  2023年   18篇
  2022年   13篇
  2021年   14篇
  2020年   17篇
  2019年   21篇
  2018年   16篇
  2017年   28篇
  2016年   36篇
  2015年   59篇
  2014年   44篇
  2013年   33篇
  2012年   33篇
  2011年   26篇
  2010年   16篇
  2009年   14篇
  2008年   5篇
  2007年   9篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1998年   3篇
  1985年   1篇
排序方式: 共有425条查询结果,搜索用时 930 毫秒
31.
深水沉积理论的深入研究发现,传统的浊流沉积理论如鲍玛序列、浊积扇、浊积岩相等可能需要重新解释,对浊流理论的质疑推动着深水沉积理论的发展。通过对浊流沉积研究历史及当前研究现状的梳理,探讨了浊流及相关重力流沉积理论的新观点。  相似文献   
32.
To study the crustal structure beneath the onshore–offshore transitional zone, a wide-angle onshore–offshore seismic experiment was carried out in northern South China Sea near Hong Kong, using large volume airgun sources at sea and seismic stations on land. The crustal velocity model constructed from traveltime fitting shows that the sedimentary thickness abruptly increases seaward of the Dangan Islands based on the characteristics of Pg and Multiple Pg, and the crustal structure beneath the sedimentary layer is relatively simple. The Moho depth is about 25–28 km along the profile and the P-wave velocity increases gradually with depth. The velocities in the upper crust range from 5.5 to 6.4 km/s, while that in the lower crust is 6.4–6.9 km/s. It also reveals a low velocity zone with a width of more than 10 km crossing the crust at about 75–90 km distance, which suggests that the Littoral Fault Zone (LFZ) exists beneath the onshore–offshore transitional zone. The magnetism anomalies, bouguer gravity anomalies and active seismic zone along the coastline imply the LFZ is a main tectonic fault in the onshore–offshore area. Combined with two previously published profiles in the continental South China (L–G profile) and in the northern margin of South China Sea (OBS1993) respectively, we constructed a land-sea super cross-section about 1000 km long. The results show the onshore–offshore transitional zone is a border separating the unstretched and the stretched continental crust. The low velocity layer (LVL) in the middle crust was imaged along L–G profile. However, the high velocity layer (HVL) in the lower crust was detected along OBS1993. By analyzing the mechanisms of the LVL in the middle crust and HVL in the base of crust, we believe the crustal structures had distinctly different attributes in the continental South China and in the northern SCS, which indicates that the LFZ could be the boundary fault between them.  相似文献   
33.
小波变换在饶阳凹陷层序地层格架建立中的应用   总被引:1,自引:0,他引:1  
小波变换提供了一种研究层序地层格架的新方法,它将测井信号从一维深度域转换到二维深度—尺度域,从多尺度识别不同级次的地层旋回界面。根据小波变换的原理,确定了测井数据小波变换在层序地层划分中的地质意义,建立了四种小波变换中的地层旋回模型。在饶阳凹陷的实际应用中,选取自然伽马曲线进行小波变换,应用时频色谱图分析和快速傅里叶变换多种方法选取尺度因子。通过对时频色谱图和不同尺度下小波系数曲线的综合分析,对饶阳凹陷古近系G104井层序地层进行了划分,并以2 198.625m位置为突变界面,划分出两个较大尺度旋回,以2142.375m、2 163.875m、2 198.625m、2 238.625m位置为界面,划分出5个较小尺度旋回。实际结果应用表明,小波多尺度变换划分层序地层的结果和传统方法划分基本一致。  相似文献   
34.
The Dongfang1-1 gas field (DF1-1) in the Yinggehai Basin is currently the largest offshore self-developed gas field in China and is rich in oil and gas resources. The second member of the Pliocene Yinggehai Formation (YGHF) is the main gas-producing formation and is composed of various sedimentary types; however, a clear understanding of the sedimentary types and development patterns is lacking. Here, typical lithofacies, logging facies and seismic facies types and characteristics of the YGHF are identified based on high-precision 3D seismic data combined with drilling, logging, analysis and testing data. Based on 3D seismic interpretation and attribute analysis, the origin of high-amplitude reflections is clarified, and the main types and evolution characteristics of sedimentary facies are identified. Taking gas formation upper II (IIU) as an example, the plane distribution of the delta front and bottom current channel is determined; finally, a comprehensive sedimentary model of the YGHF second member is established. This second member is a shallowly buried “bright spot” gas reservoir with weak compaction. The velocity of sandstone is slightly lower than that of mudstone, and the reflection has medium amplitude when there is no gas. The velocity of sandstone decreases considerably after gas accumulation, resulting in an increase in the wave impedance difference and high-amplitude (bright spot) reflection between sandstone and mudstone; the range of high amplitudes is consistent with that of gas-bearing traps. The distribution of gas reservoirs is obviously controlled by dome-shaped diapir structural traps, and diapir faults are channels through which natural gas from underlying Miocene source rocks can enter traps. The study area is a delta front deposit developed on a shallow sea shelf. The lithologies of the reservoir are mainly composed of very fine sand and coarse silt, and a variety of sedimentary structural types reflect a shallow sea delta environment; upward thickening funnel type, strong toothed bell type and toothed funnel type logging facies are developed. In total, 4 stages of delta front sand bodies (corresponding to progradational reflection seismic facies) derived from the Red River and Blue River in Vietnam have developed in the second member of the YGHF; these sand bodies are dated to 1.5 Ma and correspond to four gas formations. During sedimentation, many bottom current channels (corresponding to channel fill seismic facies) formed, which interacted with the superposed progradational reflections. When the provenance supply was strong in the northwest, the area was dominated by a large set of delta front deposits. In the period of relative sea level rise, surface bottom currents parallel to the coastline were dominant, and undercutting erosion was obvious, forming multistage superimposed erosion troughs. Three large bottom current channels that developed in the late sedimentary period of gas formation IIU are the most typical.  相似文献   
35.
由沉溺珊瑚礁、各类胶结砂以及胶结的珊瑚石或贝壳碎屑等组成的硬质薄层通常呈零散状分布,地质取样难以准确确定它们是如何分布的,这给海底管线施工带来极大的困难和风险。本文以南海北部为例,基于多种物探资料并结合正演模拟,分析、总结了海底以及海底之下硬质薄层的声学特征,在研究区综合识别出23个硬质薄层分布区。研究认为,硬质薄层与松散沉积物物理性质的差异可用于声学探测数据识别和定位。在浅地层剖面上,硬质薄层表现为强反射薄层,并对其下方地层的地震反射信号有一定的屏蔽作用,这一现象有助于确定硬质薄层是否存在以及其埋深和位置。在侧扫声呐影像和后向散射强度图上,硬质薄层通常表现为具有不规则形状的明暗变化阴影,阴影的边界指示了硬质薄层的分布范围。当硬质薄层出露于海底时,侧扫影像、反向散射强度结合浅地层剖面可以有效地识别并确定硬质薄层的范围;而当硬质薄层位于海床浅部(埋深数米到十几米)时,浅地层剖面可能是识别硬质薄层的唯一且最有效的方法。  相似文献   
36.
海底浅表层(小于1 m)沉积物的物理性质,如粒度、孔隙度、密度等是海洋沉积学研究和海洋工程地质分析的重要内容,目前主要基于有限的海底取样或原位测试获取这些沉积物的物理性质。浅地层剖面是基于声学信号(频率几千赫兹)在沉积物中的传播得到可反映沉积地层结构的数据,其中的一些声学参数,如海底反射系数、波阻抗等与沉积物物理性质密切相关。如何充分而有效地利用浅地层剖面资料,反演得到剖面覆盖区海底浅表层沉积物的物理性质参数,极具科学意义和应用价值,且基于声学属性反演沉积物物理性质是当前研究的热点。为此,本文基于渤海LD16-3CEPA至LD10-1PAPD路由段的浅地层剖面数据和海底表层沉积物的实测物理参数,利用Biot-Stoll模型建立研究区海底反射系数和沉积物物理性质之间的关系,并基于浅地层剖面数据计算得到的海底反射系数,反演了研究区海底浅表层沉积物的孔隙度、密度、平均粒径等物理性质参数。其中反演的孔隙度、密度、平均粒径与实测孔隙度、密度、平均粒径基本相符,偏差度基本都在20%的偏差范围内,表明该反演方法在该区的应用是可行的。  相似文献   
37.
进入21世纪后,针对南黄海海相残留盆地地震调查的难题,开展了反射特征理论模拟、采集与处理技术方法攻关与实践工作,取得了一系列的成果。介绍了南黄海地震勘探的主要进展与成果,在此基础上展望了近期的发展方向。  相似文献   
38.
琼东南盆地深水区构造热演化特征及其影响因素分析   总被引:5,自引:1,他引:4  
To reveal the tectonic thermal evolution and influence factors on the present heat flow distribution, based on 154 heat flow data, the present heat flow distribution features of the main tectonic units are first analyzed in detail, then the tectonic thermal evolution histories of 20 profiles are reestablished crossing the main deep-water sags with a structural, thermal and sedimentary coupled numerical model. On the basis of the present geothermal features, the Qiongdongnan Basin could be divided into three regions: the northern shelf and upper slope region with a heat flow of 50–70 m W/m2, most of the central depression zone of 70–85 m W/m2, and a NE trending high heat flow zone of 85–105 m W/m2 lying in the eastern basin. Numerical modeling shows that during the syn-rift phase, the heat flow increases generally with time, and is higher in basement high area than in its adjacent sags. At the end of the syn-rift phase, the heat flow in the deepwater sags was in a range of 60–85 m W/m2, while in the basement high area, it was in a range of 75–100 m W/m2. During the post-rift phase, the heat flow decreased gradually, and tended to be more uniform in the basement highs and sags. However, an extensive magmatism, which equivalently happened at around 5 Ma, has greatly increased the heat flow values, and the relict heat still contributes about 10–25 m W/m2 to the present surface heat flow in the central depression zone and the southern uplift zone. Further analyses suggested that the present high heat flow in the deep-water Qiongdongnan Basin is a combined result of the thermal anomaly in the upper mantle, highly thinning of the lithosphere, and the recent extensive magmatism. Other secondary factors might have affected the heat flow distribution features in some local regions. These factors include basement and seafloor topography, sediment heat generation, thermal blanketing, local magmatic injecting and hydrothermal activities related to faulting and overpressure.  相似文献   
39.
琼东南盆地深水区断层垂向输导及成藏模式   总被引:2,自引:1,他引:1  
In the Qiongdongnan Basin, faults are well developed.Based on the drilling results, the traps controlled two or more faults are oil-rich. However, when only one fault cut through the sand body, there is no sign for hy-drocarbon accumulation in the sandstone. In terms of this phenomenon, the principle of reservoir-forming controlled by fault terrace is proposed, i.e., when the single fault activates, because of the incompressibility of pore water, the resistance of pore and the direction of buoyancy, it is impossible for hydrocarbon to ac-cumulate in sandstone. But when there are two or more faults, one of the faults acts as the spillway so the hydrocarbon could fill in the pore of sandstone through other faults. In total five gas bearing structures and four failure traps are considered, as examples to demonstrate our findings. According to this theory, it is well-advised that south steep slope zone of Baodao-Changchang Depression, south gentle slope zone of Lingshui Depression, north steep slope zone of Lingshui Depression, and north steep slope zone of Baodao Depression are the most favorable step-fault zones, which are the main exploration direction in next stage.  相似文献   
40.
The Bohai Bay Basin is a classic non-marine rift basin in eastern China. The Paleogene Dongying sequences are the main hydrocarbon-bearing stratigraphic unit in the basin. Using three-dimensional (3-D) seismic data and one well control in the BZ3-1 Block in the western slope of the Bozhong Sag, we analyzed 3-D facies architectures of the Dongying sequences. The Dongying Formation, a second-order sequence, can be subdivided into four third-order sequences (from base to top: SQ1, SQ2, SQ3, and SQ4). The facies architecture was analyzed by using the seismic sedimentology approach based on 3-D seismic data. Sediment of the Dongying sequences was derived from the northern Shijiutuo Uplift via four major configurations of incised valleys, namely “V”, “U”, “W”, and composite shaped incised valleys. Seismic stratal slices reveal branching and converging characteristics of the channels from upstream to downstream. On the basis of an integrated analysis of well log, core data, seismic facies based on multi-seismic attributes, three sedimentary facies (e.g., “delta”, “fan-delta”, and “shore” or “shallow lacustrine” facies) have been recognized. The four types of incised valleys and their evolution control the sedimentary systems in the sedimentation area. The numbers and sizes of the fans are controlled by the sedimentary systems at various scales. Incised valley-fill and deltaic sand bodies are excellent hydrocarbon reservoirs and potentially good exploration targets for the study area. The reservoir quality of sequences SQ1, SQ2, and SQ3 become better gradually from base to top. The proposed sediment dispersal patterns may aid in the prediction of potential reservoir distribution. This study also demonstrates that facies architecture analysis using sequence stratigraphy and seismic sedimentology may serve as an effective approach for constructing 3D facies models for petroleum exploration in areas lacking of well or outcrop data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号